2,406 research outputs found

    Proposal for teleportation of the wave function of a massive particle

    Get PDF
    We propose a scheme for teleporting an atomic center-of-mass wave function between distant locations. The scheme uses interactions in cavity quantum electrodynamics to facilitate a coupling between the motion of an atom trapped inside a cavity and external propagating light fields. This enables the distribution of quantum entanglement and the realization of the required motional Bell-state analysis.Comment: 4 pages, 3 figure

    Observation of the Vacuum-Rabi Spectrum for One Trapped Atom

    Get PDF
    The transmission spectrum for one atom strongly coupled to the field of a high-finesse optical resonator is observed to exhibit a clearly resolved vacuum-Rabi splitting characteristic of the normal modes in the eigenvalue spectrum of the atom-cavity system. A new Raman scheme for cooling atomic motion along the cavity axis enables a complete spectrum to be recorded for an individual atom trapped within the cavity mode, in contrast to all previous measurements in cavity QED that have required averaging over many atoms.Comment: 5 pages with 4 figure

    SURVEYING FOR RANAVIRUS IN GREEN FROGS (LITHOBATES CLAMITANS) AT FIVE LOCATIONS IN INDIANA

    Get PDF
    Ranaviruses are an emerging pathogen within the United States that infects amphibians, reptiles, and fish. A Frog Virus 3-like (FV3) ranavirus has been detected at only two locations in Indiana; however, there have been few attempts to broadly sample for ranaviruses to determine their distribution across the state. This knowledge is necessary for the continued management and conservation of native amphibian populations. Our objective was to assess the occurrence of FV3-like ranaviruses in larval Green Frog (Lithobates clamitans) populations at five sites located in different regions of Indiana. Tissue samples were collected from 166 individuals and were assayed using both conventional and qPCR methods. We did not detect the presence of any FV3-like ranaviruses at any of the five sites with either PCR method, suggesting the possibility that at these sites, FV3-like ranaviruses may not be present. However, continued sampling should be carried out to monitor the status of the presence of ranaviruses in this portion of the Midwest

    Reply to the Comment on `Deterministic Single-Photon Source for Distributed Quantum Networking'

    Get PDF
    Reply to the comment of H. J. Kimble [quant-ph/0210032] on the experiment realizing a "deterministic single-photon source for distributed quantum networking" by Kuhn, Hennrich, and Rempe [Phys. Rev. Lett. 89, 067901 (2002), quant-ph/0204147].Comment: 1 page 1 figur

    Heralded multiphoton states with coherent spin interactions in waveguide QED

    Get PDF
    WaveguideQEDoffers the possibility of generating strong coherent atomic interactions either through appropriate atomic configurations in the dissipative regime or in the bandgap regime. In this work, we show how to harness these interactions in order to herald the generation of highly entangled atomic states, which afterwards can be mapped to generate single mode multi-photonic states with high fidelities.Weintroduce two protocols for the preparation of the atomic states, we discuss their performance and compare them to previous proposals. In particular, we show that one of them reaches high probability of success for systems with many atoms but low Purcell factors

    Determination of the number of atoms trapped in an optical cavity

    Get PDF
    The number of atoms trapped within the mode of an optical cavity is determined in real time by monitoring the transmission of a weak probe beam. Continuous observation of atom number is accomplished in the strong coupling regime of cavity quantum electrodynamics and functions in concert with a cooling scheme for radial atomic motion. The probe transmission exhibits sudden steps from one plateau to the next in response to the time evolution of the intracavity atom number, from Ngreater than or equal to 3 to N=2-->1-->0 atoms, with some trapping events lasting over 1 s

    Nonlinear spectroscopy in the strong-coupling regime of cavity QED

    Get PDF
    A nonlinear spectroscopic investigation of a strongly coupled atom-cavity system is presented. A two-field pump-probe experiment is employed to study nonlinear structure as the average number of intracavity atoms is varied from N̅≈4.2 to N̅≈0.8. Nonlinear effects are observed for as few as 0.1 intracavity pump photons. A detailed semiclassical simulation of the atomic beam experiment gives reasonable agreement with the data for N̅≳2 atoms. The simulation procedure accounts for fluctuations in atom-field coupling which have important effects on both the linear and nonlinear probe transmission spectra. A discrepancy between the simulations and the experiments is observed for small numbers of atoms (N̅≲1). Unfortunately, it is difficult to determine if this discrepancy is a definitive consequence of the quantum nature of the atom-cavity coupling or a result of the severe technical complications of the experiment
    • …
    corecore